Downloaded from Stanmorephysics.com education

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

COMMON TEST

MARCH 2020

MARKS: 100

TIME: 2 hours

N.B. This question paper consists of 8 pages and an information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 8 questions.
- 2. Answer **ALL** questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

Given the quadratic sequence: p; 5; q; 19; ...

- 1.1 Calculate the value(s) p and q if the second constant difference is 2. (4)
- 1.2 Determine the n^{th} term of the quadratic sequence. (4)
- 1.3 Determine the first term of the sequence that will have a value greater than 10301. (4) [12]

QUESTION 2

The sum to n terms of an arithmetic sequence is 36. The first and last terms are 1 and 11 respectively. Determine the number of terms n and its common difference d.

[5]

QUESTION 3

In a geometric sequence the first term is "a" and its common ratio is "r". Prove that the sum to n terms of the sequence is

$$S_n = \frac{a(1-r^n)}{1-r} \tag{4}$$

3.2 Given:

$$\sum_{k=1}^{m} 3.2^{1-k}$$

- 3.2.1 Write down the first TWO terms of the geometric sequence. (2)
- 3.2.2 Calculate the value of m if

$$\sum_{k=1}^{m} 3.2^{1-k} = \frac{3069}{512} \tag{5}$$

3.3 A ball is dropped from a height of 24 metres. Every time the ball hits the ground, it rises $\frac{3}{4}$ of its original height. Calculate the sum of the total vertical heights reached by the ball after the first bounce until it comes to rest. (3)

[14]

Mathematics Downloaded from Stanmore physicas 2020 m

QUESTION 4

4.1 Use the diagram below to calculate, **without the use of a calculator**, the value of each of the following:

$$4.1.1 \quad \sin(-\theta) \tag{3}$$

$$4.1.2 \quad \cos 2\theta \tag{4}$$

4.2 Without using a calculator, determine the value of the following expressions.

4.2.1
$$\sin 75^{\circ} \cos 45^{\circ} - \sin 15^{\circ} \cos 45^{\circ}$$
 (5)

$$4.2.2 \quad \frac{\cos 100^{\circ}}{\sin \left(-10^{\circ}\right)} \times \tan^2 120^{\circ} \tag{6}$$

4.3

4.3.1 Prove that, for angles α and β .

$$\frac{\sin \alpha}{\sin \beta} - \frac{\cos \alpha}{\cos \beta} = \frac{2\sin (\alpha - \beta)}{\sin 2\beta} \tag{4}$$

4.3.2 Hence, or otherwise, show that:

$$\frac{\sin 5\beta}{\sin \beta} - \frac{\cos 5\beta}{\cos \beta} = 4\cos 2\beta \tag{3}$$

4.4 Determine the general solution of:

$$2\sin^2 x - \sin x - 1 = 0 \tag{5}$$

[30]

In the diagram below, M is the centre of the circle DABC. EDF is a tangent to the circle at D and FBG is another tangent to the circle at B.

Calculate the following angles, with reasons:

$$5.1 \qquad \hat{C} \tag{2}$$

$$5.2 \hat{M}_1$$
 (3)

$$\hat{B}_{3}$$
 (3)

5.4
$$\hat{D}_5$$
 (2) [10]

Mathematics 6 Common Test March 2020

QUESTION 6

In the diagram below, NP and NM are tangents to the circle at P and M. K is a point on the circle KP, KM and PM are chords so that $\widehat{K} = x$. L is a point on KM so that KP//LN, L and P are joined.

6.1 Prove that NMLP is a cyclic quadrilateral. (4)

6.2 Prove that ΔKLP is isosceles. (6)

[10]

Downloaded from Stanmorephysics.com

 Δ PQR and Δ FGH are given, $\hat{P} = \hat{F}; \hat{Q} = \hat{G}$ and $\hat{R} = \hat{H}$

Prove theorem which states that if ΔPQR and ΔFGH are equiangular, then

$$\frac{PQ}{FG} = \frac{PR}{FH}$$

[6]

Mathematics 8 Common Test March 2020

QUESTION 8

In the diagram below, TP is a diameter in the circle with centre O. TP is extended to R. RM is a tangent to the circle at N. MO intersects chord NT at W. NP//MO. $\hat{WTO}=30^{\circ}$

8.1 Give, with reasons, THREE other angles each equal to 30°. (3)

8.2 Determine $R\hat{N}T$ (2)

8.3 Prove that:

8.3.1
$$\Delta RNP /// \Delta RTN$$
 (3)

8.3.2 TW.
$$RN = \frac{1}{2}RT.NP$$
 (5)

Downloaded from Stanmorephysics.com
TOTAL MARKS: 100

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}[2a + (n-1)d]$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; \quad r \neq 1$$

$$S_{\infty} = \frac{a}{1-r}$$
; -1 < r < 1

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y = mx + c \qquad \qquad y - y_1 = m(x - x_1)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta$$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

InΔABC:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$area \Delta ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\bar{x} = \frac{\sum x}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n} P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Downloaded from Stanmorephysics.com education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

COMMON TEST

MARCH 2020

MARKING GUIDELINES

MARKS: 100

TIME: 2 hours

This memorandum consists of 10 pages

1.1	7	T	
1.1	$p \setminus \int_{0}^{5} q \setminus \int_{0}^{19} q$		
	1D $5-p$ $q-5$ $19-q$		
	10 242		
	q+p-10 24-2q		
	2D 2 2		
	24-2q=2	$A\checkmark 24 - 2q = 2$	
	q = 11	$CA \checkmark q$ value	
	q+p-10=2	$A \checkmark q + p - 10 = 2$	(4)
	p=1	$CA \checkmark p$ value	(4)
1.2	$2a=2$ $\therefore a=1$	A√a – value	
	$3a+b=4 \qquad \therefore b=1$	$CA \checkmark b$ – value	
	$a+b+c=1 \qquad \therefore c=-1$	$CA \checkmark c$ - value	(4)
	$T_n = n^2 + n - 1$	$CA \checkmark n^{th} term$	
	OR	OR	
	$2a = 2$ $\therefore a = 1$	$A \checkmark a$ – value	
	$3a+b=4 \qquad \therefore b=1$	$CA \checkmark b$ – value	
	$\therefore c = T_0 = -1$	CA ✓ c – value	(4)
	$T_n = n^2 + n - 1$	$CA \checkmark n^{th} term$	
1.2	m2 4 40204	CA (agyoting with tarms to	
1.3	$T_n = n^2 + n - 1 = 10301$	CA \checkmark equating n^{th} term to 10301	
	$n^2 + n - 10302 = 0$ (n + 102)(n - 101) = 0	CA ✓ factors/quadratic	
	n = -102 or $n = 101$	formula	
	102 ^{2nd} term	$CA\checkmark$ values of n	(4)
		CA √ 102	
	OR	OD	
	$T_n = n^2 + n - 1 > 10301$	OR CA ✓ setting up inequality	
	$n^2 + n - 10302 > 0$	CA ✓ setting up inequality CA ✓ factors/quad. formula	
	(n+102)(n-101) > 0 n < -102 or $n > 101$	CA✓ interval and notation	
	102^{2nd} term	CA √ 102	(4)
			[12]

$S_{n} = \frac{n}{2} [a + T_{n}]$ $36 = \frac{n}{2} [1 + 11]$ $36 = 6n$ $6 = n$ $11 = a + (n - 1)d$ $11 = 1 + (6 - 1)d$ $2 = d$	A \checkmark substituting into sum formula $CA \checkmark 36 = 6n$ $CA \checkmark n - value$ $CA \checkmark substituting into general term formula CA \checkmark d - value$	(5)
OR $S_{n} = \frac{n}{2} [2a + (n-1)d]$ $36 = \frac{n}{2} [2(1) + (n-1)d] \rightarrow (1)$ $11 = a + (n-1)d$ $11 = 1 + (n-1)d$	OR A✓ substituting into sum formula and forming equation (1) A✓ substituting into general	
$10 = (n-1)d \rightarrow (2)$ $36 = \frac{n}{2}[2(1) + 10]$ $72 = 12n$ $n = 6$ $10 = (6-1)d$	term formula and forming equation (2) $CA \checkmark 72 = 12n$ $CA \checkmark n - \text{value}$	
2 = d	$CA \checkmark d$ – value	(5)

Downloaded from Stanmorephysics.com

3.1	$S_n = a + ar + \dots + ar^{n-1}$	→ (1)	A✓ writing equation	
	$rS_n = ar + ar^2 + \dots + ar^{n-1} + ar^n$	→ (2)	A \checkmark multiplying all terms by r	
	(2) - (1): $rS_n - S_n = ar^n - a$ $S_n(r^n - 1) = a(r^n - 1)$ $S_n = \frac{a(r^n - 1)}{r - 1}$		A√subtracting: LHS and RHS A√factorizing	(4)
3.2.1	$3; \frac{3}{2}$		AA✓✓ each value	(2)
3.2.2	$S_m = \frac{3\left[\left(1 - \left(\frac{1}{2}\right)^m\right]}{1 - \frac{1}{2}} = \frac{3069}{512}$ $6\left[1 - \left(\frac{1}{2}\right)^m\right] = \frac{3069}{512}$		CA✓ substituting into sum formula	
	$\left[1 - \left(\frac{1}{2}\right)^m\right] = \frac{1023}{1024}$ $\left(\frac{1}{2}\right)^m = \frac{1}{1024}$ $\left(\frac{1}{2}\right)^m = \left(\frac{1}{2}\right)^{10}$ $m = 10$		$CA\checkmark \left[1 - \left(\frac{1}{2}\right)^{m}\right] = \frac{1023}{1024}$ $CA\checkmark \left(\frac{1}{2}\right)^{m} = \frac{1}{1024}$ $CA\checkmark expressing 1024 as a power of 2$ $CA\checkmark m - value$ N.B. Can be solved using logs.	(5)
3.3	$a = 24\left(\frac{3}{4}\right) = 18 \qquad and r = \frac{3}{4}$ $S_{\infty} = \frac{a}{1 - r}$ $= \frac{24\left(\frac{3}{4}\right)}{1 - \frac{3}{4}}$		A \checkmark r – value CA \checkmark substituting into sum to infinity formula	
	=72 m		CA✓ answer	(3)
				[14]

4.1

4.1.1	$r^{2} = x^{2} + y^{2}$ $= (-1)^{2} + (-\sqrt{3})^{2}$ $= 1 + 3$ $= 4$ $\therefore r = 2$ $\sin(-\theta) = -\sin\theta$ $= -\left(\frac{-\sqrt{3}}{2}\right)$ $= \frac{\sqrt{3}}{2}$	If $sin(-\theta) = sin \theta$ $= -\frac{\sqrt{3}}{2}$	$A \checkmark r = 2$ $CA \checkmark \text{ substitution}$ $CA \checkmark \text{ answer}$	
		Max. 2/3		(3)
4.1.2	$\cos 2\theta = 1 - 2\sin^2 \theta$ $= 1 - 2\left(\frac{-\sqrt{3}}{2}\right)^2$ $= 1 - 2\left(\frac{3}{4}\right)$ $= \left(1 - \frac{3}{2}\right) = -\frac{1}{2}$ \mathbf{OR} $\cos 2\theta = 2\cos^2 \theta - 1$ $= 2\left(\frac{-1}{2}\right)^2 - 1$ $= 2\left(\frac{1}{4}\right) - 1$ $= \frac{1}{2} - 1 = -\frac{1}{2}$		A $\sqrt{1-2\sin^2\theta}$ CA $\sqrt{1-2\cos^2\theta}$ CA $$	(4)
	OR		OR	
	$\begin{aligned} \cos 2\theta &= \cos^2 \theta - \sin^2 \theta \\ &= \left(\frac{-1}{2}\right)^2 - \left(\frac{-\sqrt{3}}{2}\right)^2 \\ &= \frac{1}{4} - \frac{3}{4} \\ &= -\frac{1}{2} \end{aligned}$		A√ cos2θ = cos²θ − sin²θ CA√ substitution into the correct expression CA√ simplification CA✓ answer	(4)
	$=-\frac{1}{2}$		CAV aliswei	(4)

Downloaded from Stanmorephysics.com

4.2	0		
4.2.1	$\sin 75^{\circ} \cos 45^{\circ} - \sin 15^{\circ} \cos 45^{\circ}$		
	$= \sin(90^{\circ} - 15^{\circ}). \cos 45^{\circ} - \sin 15^{\circ} \sin 45^{\circ}$ $= \sin(90^{\circ} - 15^{\circ}). \cos 45^{\circ} - \sin 15^{\circ} \sin 45^{\circ}$	$A \checkmark \sin 75^o = \cos 15^o$	
	$=\cos 15^{\circ} \cos 45^{\circ} - \sin 15^{\circ} \sin 45^{\circ}$	$A \checkmark \cos 45^{\circ} = \sin 45^{\circ}$	
	$=\cos(45^{\circ} + 15^{\circ})$	$CA \checkmark cos(45^o + 15^o)$	
	$=\cos 60^{\circ}$	CA√ cos 6 0°	
		$CA\sqrt{\frac{1}{2}}$ (ACCEPT 0,5)	
	$=\frac{1}{2}$		(5)
	2	OB	(-)
	OR	OR	
	$\sin 75^{\circ} \cos 45^{\circ} - \sin 15^{\circ} \cos 45^{\circ}$	✓ removing common factor	
	$\cos 45^{\circ} (\sin 75^{\circ} - \sin 15^{\circ})$		
	Now		
	$\sin 75^{\circ} - \sin 15^{\circ}$	$\checkmark \sin 75^{\circ} - \sin 15^{\circ} = 2\cos 45^{\circ} \sin 30^{\circ}$	
	$= \sin(45^{\circ} + 30^{\circ}) - \sin(45^{\circ} - 30^{\circ})$	$\checkmark \cos 45^\circ = \frac{\sqrt{2}}{2}$	
	$= 2\cos 45^{\circ} \sin 30^{\circ}$	$\checkmark \sin 30^\circ = \frac{1}{3}$	
	$\cos 45^{\circ} (\sin 75^{\circ} - \sin 15^{\circ})$ = $\cos 45^{\circ} . 2\cos 45^{\circ} \sin 30^{\circ}$	2	
	$= \cos 45 \cdot 2\cos 45 \sin 30$		
	$= \cos 45^{\circ} \cdot 2\cos 45^{\circ} \sin 30^{\circ}$ $= \frac{\sqrt{2}}{2} \cdot 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$		
	1	✓answer	(5)
	$=\frac{1}{2}$		
4.2.2	$\frac{\cos 100^{\circ}}{\sin (-10^{\circ})} \times \tan^2 120^{\circ}$	$\sqrt{\cos(90^{\circ} + 10^{\circ})}$	
	$\sin\left(-10^{\circ}\right)^{\lambda}$ tan 120	$\checkmark - \sin 10^\circ$	
	$= \frac{\cos(90^{\circ} + 10^{\circ})}{-\sin 10^{\circ}} \times \tan^{2} 60^{\circ}$	$\sqrt{\tan^2 60^\circ}$	
	$=\frac{1}{-\sin 10^\circ}$ × tan 60°	$\sqrt{-\sin 10^\circ}$	
	$-\sin 10^{\circ}$ (-2	$\sqrt{3}$	
	$=\frac{-\sin 10^{\circ}}{-\sin 10^{\circ}}\times(\sqrt{3})^{2}$		
	= 3	√3	(6)
	<i>–</i> 3		(0)
	OR	OR	
	1000 21200		
	$\frac{\cos 100^{\circ} \times \tan^{2} 120^{\circ}}{\cos 100^{\circ}}$		
	$\sin(-10^{\circ})$		
	$= \frac{(-\cos 80^{\circ}) \times (-\tan 60^{\circ})^{2}}{(-\sin 10^{\circ})}$	2	
	$ \left(-\sin 10^{\circ}\right)$	$\sqrt{-\cos 80^{\circ}}$; $\sqrt{-\sin 10^{\circ}}$; $\sqrt{\tan^2 60^{\circ}}$	
	$\left(-\sin 10^{\circ}\right) \times \left(-\sqrt{3}\right)^{2}$	$\sqrt{-\cos 80^o} = -\sin 10^o; -\sqrt{3}$	
	$=\frac{\sin 10^{\circ} (\sqrt{5})}{-\sin 10^{\circ}}$, - cos ou sili 10°; - v s	
	= 3	√3	(6)

Mathematics	NSC 7	Common Test March 2020
4.3.1 LHS $= \frac{\sin \alpha}{\sin \beta} - \frac{\cos \alpha}{\cos \beta}$ $\frac{\sin \alpha \cos \beta - \cos \beta}{\sin \beta \cos \beta}$	$\frac{s \alpha}{s \beta}$ $s \alpha \sin \beta$ A \(\psi \text{writing} \)	as a single fraction
$= \frac{\sin(\alpha - \beta)}{\sin \beta \cos \beta}$	A√sin (α -	- β)
$= \frac{2}{2} \times \frac{\sin (\alpha - \mu)}{\sin \beta \cos \beta}$	$\frac{\beta}{\beta}$ $A \checkmark \frac{2}{2}$	
$= \frac{2\sin(\alpha - \beta)}{2\sin\beta\cos\beta}$	A√simplifi	cation
$= \frac{2\sin(\alpha - \beta)}{\sin 2\beta}$ $= RHS$		(4)
$LHS = \frac{\sin 5 \beta}{\sin \beta}$	$\frac{\beta - \cos 5 \beta \sin \beta}{\beta \cos \beta}$ $\frac{\beta}{\beta \cos \beta}$ $\frac{-\cos 5}{\beta \cos \beta}$ $\frac{\cos \beta}{\cos 2 \beta}$ $A \checkmark \sin 4 \beta \Rightarrow \cos 4 \beta$	as a single fraction $=2 \sin 2\beta \cos 2\beta$ (3)
OR	OR	
Replace $\alpha = 5\beta$ in 4.3.		
$RHS = \frac{2\sin(5\beta - \beta)}{\sin 2\beta}$ $= \frac{2\sin 4\beta}{\sin 2\beta}$	√ sin 4β	
$=\frac{2.2\sin 2\beta\cos 2\beta}{\sin 2\beta}$	√expansion	$\alpha \sin 4\beta$ (3)

Downloaded from Stanmorephysics.com

 $= 4\cos 2\beta$

4.4	$2\sin^2 x - \sin x - 1 = 0$		A✓ factorization	
	$(2\sin x + 1)(\sin x - 1) = 0$		$CA \checkmark \sin x = -\frac{1}{2}$; $\sin x = 1$	
	$\sin x = -\frac{1}{2} \text{ or } \sin x = 1$ $\sin x = -\frac{1}{2}$ $x = 210^{\circ} + k.360^{\circ} \text{ or } x = 330 + k.360; k \in \mathbb{Z}.$	OR	CA $\checkmark x = 210^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ CA $\checkmark x = 330^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	
	$\sin x = 1$		$C\Lambda = 00^{\circ} + k \cdot 260^{\circ} \cdot k = 7$	r <i>e</i> n
	$x = 90^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$		$CA \checkmark x = 90^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	[5]

5.1	$\hat{C} + 140^{\circ} = 180^{\circ}$ opp \angle s of cyclic quad	✓ S/R	
	$\therefore \hat{C} = 40^{\circ}$	✓ A	
		Answer only with reason 2/2	(2)
5.2	$\widehat{M}_1 = 2\widehat{\mathcal{C}} \angle$ at centre is twice \angle at circum.	✓ S✓R	
	$= 2(40^{\circ})$	80° ✓ CA	
	= 80°		(3)
		Answer only with reason 3/3	
5.3	$\hat{B}_3 = \frac{1}{2}(180^\circ - 80^\circ) \angle s \text{ opp} = \text{sides}$	✓ S✓R	
	$= 50^{\circ}$	✓ A	
	= 50°	Answer only with reason 3/3	(3)
5.4	$\widehat{D}_5 = \widehat{B}_3 + 28^\circ$ tan – chord theorem	✓ S/R	
	$=50^{\circ} + 28^{\circ}$		
	= 78°	✓ CA Answer	(2)
		Answer only with reason 2/2	
			[10]

Ma Downloaded from Stanmorephysics.com9

6.1		S✓R ✓S/R	
	$L_1 = P_1$ NMLP is a cyclic quad (Converse s in the same segment)	✓R	(4)
6.2	$\widehat{M}_1 = x$ Tan-chord theorem $\widehat{L}_2 = \widehat{M}_1 = x$ s in same segment $\widehat{P}_3 = \widehat{L}_2 = x$ alt s KP//MN $\widehat{K} = \widehat{P}_3$ $\therefore \Delta KLP$ is isosceles (Sides opp equal angles)	✓ S/R ✓ S ✓ R ✓ S ✓ R	(6)
			[10]

Construction: M	ark off PA = FG and	✓ construction	
PB = FH and join	n AB.		
		✓S ✓R	
$\Delta PAB \equiv \Delta FGH$	Congruency s s		
$P\hat{A}B = \hat{G}$			
$\widehat{G} = \widehat{Q}$	given	✓S	
$\therefore P\hat{A}B = \hat{Q}$	_	✓R	
$\therefore AB//QR$	corresp. s equal	(0.15)	
		✓S/R	
$\frac{PQ}{R} = \frac{PR}{R}$	line // to one side of Δ		[6]
PA PB	inic // to one side of \(\Delta\)		[6]
$\therefore \frac{PQ}{RG} = \frac{PR}{RW}$			
FG FH			

8.1	$\widehat{N}_2 = 30^\circ$ \angle s opp = sides $\widehat{N}_4 = 30^\circ$ tan-chord theorem $\widehat{M} = 30^\circ$ corresponding \angle s NP//MO	✓S/R ✓S/R ✓S/R	(3)
8.2	$\widehat{N}_2 + \widehat{N}_3 = 90^{0}$ (\angle in the semi-circle) $\therefore R\widehat{N}T = 90^{\circ} + 30^{\circ}$ $= 120^{\circ}$	✓S/R ✓CA	(2)
8.3.1	$In\Delta RNP and \Delta RTN$ $\hat{R} = \hat{R}$ common $\hat{N}_4 = \hat{T} = 30^\circ$ proven $\hat{P}_2 = R\hat{N}T$ rem \angle $\therefore \Delta RNP / / / \Delta RTN$ (AAA)	✓S/R ✓S/R ✓R	(3)
8.3.2	$\frac{RN}{RT} = \frac{NP}{TN} \qquad (/// \text{ triangles})$ $RN. TN = RT. NP$ $\widehat{W}_2 = 90^\circ = T\widehat{N}P \qquad \text{corr } \angle; NP//MO$ $NW = WT \qquad \text{line from centre } \bot \text{ chord}$ $\therefore NT = 2WT$ $\therefore 2WT. RN = RT. NP$ $TW. RN = \frac{1}{2}RT. NP$	\checkmark S \checkmark R \checkmark S/R \checkmark S/R \checkmark S/R ✓ substituting NT = 2WT	
			[13]