

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

COMMON TEST

MARCH 2022

Stanmorephysics.com

MARKS: 100

TIME: 2 hours

N.B. This question paper consists of 6 pages, 2 diagram sheets and an information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 8 questions.
- 2. Answer **ALL** questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

Given the quadratic sequence: 5; x; y; 29; ... and its second constant difference is equal to 4.

- 1.1 Calculate the values of x and y. (4)
- 1.2 If x = 9 and y = 17, determine the n^{th} term of the quadratic sequence. (4)
- 1.3 Calculate the 50th term of the sequence. (2)

[10]

QUESTION 2

The 2nd term of an arithmetic sequence is 8 and the 7th term is eleven times the value of the first term. Determine the first three terms of the sequence. [7]

QUESTION 3

3.1 Given:

$$\sum_{k=1}^{n} \frac{1}{p^{k-1}}$$

- 3.1.1 Write down the values of the first three terms of the series in terms of p. (1)
- 3.1.2 Determine the values of p for which the series is converging. (4)
- 3.2 The sum of the first n terms of a sequence is given by $4 4\left(\frac{1}{2}\right)^n$.

Calculate the first three terms. (5)

[10]

4.1 Given $\triangle ABC$ and $\triangle DEF$ with $\widehat{A} = \widehat{D}$, $\widehat{B} = \widehat{E}$ and $\widehat{C} = \widehat{F}$.

Prove the theorem which states that $\frac{AB}{DE} = \frac{AC}{DF}$ (7)

4.2 In the figure, $\triangle ABC$ has HG || AC and ED || BC. ED and HG intersect at K. $\frac{AD}{DC} = \frac{3}{2}$ and BG = 2GC . AB = 15 units.

Determine with reasons the value of:

4.2.2 AH

$$4.2.3 \quad \underline{GK}$$

4.2.4 Area of Δ HEK
Area of Δ HBG

[19]

(3)

In the figure: PQ is the diameter of the circle. SP is the tangent to the circle at P. QT intersects the circle at W and with T on the line SP. QS intersects the circle at R. $\widehat{P}_1 = x$.

5.1 Give a reason why
$$P\widehat{R}Q = 90^{\circ}$$
. (1)

5.2 Prove
$$\hat{S} = x$$
. (3)

5.3 Prove that SRWT is a cyclic quadrilateral. (3)

5.4 Prove that
$$\Delta QWR \parallel \Delta QST$$
. (3)

5.5 If QW = 5 cm, TW = 1 cm, QR = 4 cm and WR = 2 cm, calculate the lengths of:

6.1 Given $\cos 20^{\circ} = p$ and $\sin 14^{\circ} = q$

Without using a calculator, calculate the value of the following in terms of p, q or p and q.

$$6.1.1 \sin 20^{\circ}$$
 (2)

$$6.1.2 \cos 6^{\circ}$$
 (6)

6.2 Simplify into a single trigonometric ratio.

$$\sqrt{\frac{\frac{1}{2}\sin 2x}{\tan(540^\circ + x)\left(\frac{1}{\cos^2 x} - \tan^2 x\right)}}\tag{6}$$

[14]

QUESTION 7

7.1.1 Prove the following identity:

$$\cos 4x = 8\cos^4 x - 8\cos^2 x + 1 \tag{4}$$

7.1.2 Hence, determine, without the use of a calculator, the general solution of

$$16\cos^4 x - 16\cos^2 x + 2 = 1 \tag{5}$$

- 7.1.3 Write down the minimum value of the expression $16\cos^4 x 16\cos^2 x + 2$. (2)
- 7.2 Calculate, without the use of a calculator, the value of:

$$\frac{2\sin^2 22.5^\circ - 1}{4\sin 22.5^\circ \cos 22.5^\circ} \tag{5}$$

[16]

QUESTION 8

8.1 Sketch the graphs of $f(x) = \sin(2x)$ and $g(x) = 2\cos x$ for the domain $x \in [-90^\circ; 180^\circ]$. (Use the axes provided) (6)

8.2 Use your graphs to determine the solution $\frac{g(x)}{f(x)} \ge 1$. (2)

[8]

INFORMATION SHEET: MATHEMATICS **INLIGTING BLADSY**

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$

$$A = P(1 - ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^{n}$$

$$T_n = a + (n-1)a$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}(2a + (n-1)d)$

$$T_n=ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 ; $r \ne 1$ $S_\infty = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ area $\triangle ABC = \frac{1}{2}ab \cdot \sin C$

$$a^2=b^2+c^2-2bc.\cos A$$

area
$$\triangle ABC = \frac{1}{2}$$
 ab. sin C

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$$

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta \qquad \qquad \sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha . \cos \beta - \sin \alpha . \sin \beta \qquad \qquad \cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\overline{x} = \frac{\sum f.x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

NAME: _____

GRADE: _____

DIAGRAM SHEET QUESTION 4.1

QUESTION 4.2

QUESTION 5

QUESTION 8

2 Ty

90 -60 -30 O 30 60 90 120 150 180

Downloaded from Stanmore Downloaded from Stanm

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

MARKING GUIDELINE

COMMON TEST

MARCH 2022

MARKS: 100

This memorandum consists of 9 pages.

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	2^{nd} Diff $y-2x+5$ $29-2y+x$		
	y-2x+5=4 $y-2x=-1 (1)$ $29-2y+x=4$ $-2y+x=-25 (2)$	A✓ setting up equation 1 st line A✓ setting up equation 1 st line	
	(1) \times 2: $2y - 4x = -2 \dots$ (3) (3) + (2): $-3x = -27 \therefore x = 9$ $\therefore y = 17$	$CA \checkmark x - \text{value}$ $CA \checkmark y - \text{value}$	(4)
1.2	2a = 4 : a = 2 3a + b = 4 : b = -2 a + b + c = 5 : c = 5 $T_n = 2n^2 - 2n + 5$	$A \checkmark a$ – value $CA \checkmark b$ – value $CA \checkmark c$ – value $CA \checkmark n^{th}$ term	(4)
	OR	OR	
	$2a = 4 \therefore a = 2$ $3a + b = 5 \therefore b = -2$ $c = T_0 = 5$ $T_n = 2n^2 - 2n + 5$	$A \checkmark a$ - value $CA \checkmark b$ - value $CA \checkmark c$ - value $CA \checkmark n^{th}$ term	(4)
	OR $T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)}{2}d_2$	OR	
	OR $T_n = \frac{(n-1)}{2} [2a + (n-2)d] + T_1$	OR	
1.3	$T_{50} = 2(50)^2 - 2(50) + 5 = 4905$	CA✓substitution (from 1.2) CA✓answer	(2)
			[10]

$2 a+d=8 \to (1)$	A√equation (1)	
$a+6d=11a \qquad \rightarrow (2)$	A✓ equation (2)	
$d = 8 - a \qquad \rightarrow (3)$	CA \checkmark making d/a the subject	
a+6(8-a)=11a	CA \checkmark correct substitution of d/a	
a+48-6a=11a		
48 = 16a		
a=3	CA ✓ a/d value	
d=5	CA ✓ d/a value	
3;8; 13;	CA ✓ sequence	
	[7]	

QUESTION 3

3.1.1	$1; \frac{1}{p}; \frac{1}{p^2}$	A✓All three terms	(1)
3.1.2	-1 < r < 1	A√condition for convergence	
	$-1<\frac{1}{p}<1$	$CA \checkmark r$ value in terms of p	
	p < -1 or $p > 1$	CACA✓✓answers	(4)
3.2	$S_n = 4 - 4\left(\frac{1}{2}\right)^n$		
	$T_1 = S_1 = 4 - 4\left(\frac{1}{2}\right)^1 = 2$	A✓ first term value	
	$T_1 + T_2 = S_2 = 4 - 4\left(\frac{1}{2}\right)^2 = 3$	A✓ Sum of first two terms	
	$T_1 + T_2 + T_3 = S_3 = 4 - 4\left(\frac{1}{2}\right)^3 = 3\frac{1}{2}$	A✓Sum of first 3 terms	
	$\therefore T_2 = 1$	CA✓ second term value	
	$\therefore T_3 = \frac{1}{2}$	CA✓third term value	(5)
			[10]

4.1	On AB mark off a point P	such that AP = DE and	✓S Construction	
	on AC mark off a point Q			
	Join PQ.			
	In ΔABC and ΔDEF			
	1. $AP = DE$ (Co	onstruction)		
	2. $AQ = DF$ (Co	onstruction)	✓S/R	
	3. $\hat{\mathbf{A}} = \hat{\mathbf{D}}$	Given)	✓S	
	$\therefore \Delta \mathbf{APQ} \equiv \Delta \mathbf{DEF} (S$	SAS)		
	Now $\mathbf{A}\mathbf{\hat{P}}\mathbf{Q} = \mathbf{D}\mathbf{\hat{E}}\mathbf{F}$		✓S	
	But $\mathbf{D}\hat{\mathbf{E}}\mathbf{F} = \hat{\mathbf{B}}$ (G	Siven)	✓S/R	
	$: \mathbf{A}\widehat{\mathbf{P}}\mathbf{Q} = \widehat{\mathbf{B}}$,		
	PQ BC (C	orresponding angles =)	40.15	
	,		✓S/R	
	$\frac{AB}{AB} = \frac{AC}{AB}$	Down The DOUDG		
	$\frac{1}{AP} - \frac{1}{AQ}$	Prop. Thm. PQ BC)	/D	
	•		√R	(7)
	AB _ AC	Construction AD DE		[7]
	$\frac{\overline{DE}}{DF} = \frac{\overline{DF}}{DF}$	Construction $AP = DE$		
		and $AQ = DF$)		

4.2.2 $\frac{AHE}{AHE} = \frac{3}{4} \dots (Prop. Thm. HG AC)$ $AH = 5 \text{ units}$ $\frac{15}{15} \frac{GB}{GB} = \frac{3}{3} \dots (Prop. Thm. HG AC)$ $\frac{GK}{KH} = \frac{BE}{EH} = \frac{6}{4} = \frac{3}{2} \dots (Prop. Thm. EK BG)$ $\frac{GK}{KH} = \frac{BE}{EH} = \frac{6}{4} = \frac{3}{2} \dots (Prop. Thm. EK BG)$ $\frac{AHEK}{AHEG} = \frac{1}{5} \dots (AS \text{ with equal altitudes})$ $\frac{AHEK}{ARCAG} = \frac{1}{40} = \frac{2}{5} \dots (AS \text{ with equal altitudes})$ $\frac{AHEK}{ARCAG} = \frac{1}{40} = \frac{1}{5} \dots (AS \text{ with equal altitudes})$ $\frac{AHEK}{ARCAG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS \text{ with equal altitudes})$ $\frac{AHEK}{AHBG} = \frac{1}{2} \cdot (A) \cdot (AS with $	4.2.1	$\frac{AE}{15} = \frac{AD}{AC} = \frac{3}{5} \dots \text{ (Prop. Thm. ED } \parallel \text{ BC)}$ $AE = 9 \text{ units}$	✓S✓R ✓Answer	(3)
$\frac{GK}{KH} = \frac{BE}{EH} = \frac{6}{4} = \frac{3}{2} \dots (Prop. Thm. EK \parallel BG)$ $\frac{AA + 2A}{AB + 2A} = \frac{3}{2} \dots (AS \text{ with equal altitudes})$ $\frac{A + 2A}{AB + 2A} = \frac{AB + 2A}{AB + 2A} = \frac{2}{AB + 2A} \dots (AS \text{ with equal altitudes})$ $\frac{A + 2A}{AB + 2A} = \frac{AB + 2A}{AB + 2A}$	4.2.2	$\frac{AH}{15} = \frac{CG}{CB} = \frac{1}{3} \dots \text{ (Prop. Thm. HG } \parallel \text{AC)}$ $AH = 5 \text{ units}$		(3)
$\frac{\Delta HEG}{\Delta HBG} = \frac{4}{10} = \frac{2}{5} \dots (\Delta s \text{ with equal altitudes})$ $\frac{Area \text{ of } \Delta HEK}{Area \text{ of } \Delta HBG} = \frac{\Delta HEK}{\Delta HBG} \times \frac{\Delta HEG}{\Delta HBG} = \frac{2}{5} \times \frac{2}{5} = \frac{4}{25}$ OR $\frac{\Delta HEK}{\Delta HBG} = \frac{\frac{1}{2} \cdot (4)(2c) \sin E \hat{H} K}{\frac{1}{2} \cdot (10)(5c) \sin E \hat{H} K}$ $\frac{\Delta HEK}{\Delta HBG} = \frac{4}{25}$ OR OR $\Delta HEK = \frac{2}{5} (\Delta HEG) \dots (\Delta s \text{ with equal altitudes})$ $= \frac{2}{5} (\frac{2}{5} \Delta HBG) \dots (\Delta s \text{ with equal altitudes})$ $\frac{Area \text{ of } \Delta HEK}{Area \text{ of } \Delta HEK} = \frac{4}{25}$ $Area \text{ of } \Delta HEK = \frac{4}{25}$ (3) $Area \text{ of } \Delta HEK = \frac{4}{25}$ $Area \text{ of } \Delta HEK = \frac{4}{25}$ $Area \text{ of } \Delta HEK = \frac{4}{25}$ (3) $Area \text{ of } \Delta HEK = \frac{4}{25}$ $Area \text{ of } \Delta HEK = \frac{4}{25}$ (3) $Area \text{ of } \Delta HEK = \frac{4}{25}$ $Area $	4.2.3			(3)
$ \frac{\Delta \text{HEK}}{\Delta \text{HBG}} = \frac{\frac{1}{2} \cdot (4)(2c) \sin E \hat{H} K}{\frac{1}{2} \cdot (10)(5c) \sin E \hat{H} K} $ $ \frac{\Delta \text{HEK}}{\Delta \text{HBG}} = \frac{4}{25} $ OR $ OR $ $ \Delta \text{HEK} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ = \frac{2}{5} \left(\frac{2}{5} \Delta \text{HBG}\right) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $ \frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $ $\frac{\Delta \text{HEK}}{\Delta \text{HEK}} = \frac{2}{5} (\Delta \text{HEG}) \dots (\Delta \text{s with equal altitudes}) $	4.2.4	$\frac{\Delta \text{HEK}}{\Delta \text{HEG}} = \frac{2}{5} \dots \text{ (}\Delta \text{s with equal altitudes)}$ $\frac{\Delta \text{HEG}}{\Delta \text{HBG}} = \frac{4}{10} = \frac{2}{5} \dots \text{ (}\Delta \text{s with equal altitudes)}$ $\frac{\text{Area of }\Delta \text{HEK}}{\text{Area of }\Delta \text{HBG}} = \frac{\Delta \text{HEK}}{\Delta \text{HEG}} \times \frac{\Delta \text{HEG}}{\Delta \text{HBG}} = \frac{2}{5} \times \frac{2}{5} = \frac{4}{25}$	✓S/R	(3)
$\Delta HEK = \frac{2}{5} (\Delta HEG) \dots (\Delta s \text{ with equal altitudes})$ $= \frac{2}{5} (\frac{2}{5} \Delta HBG) \dots (\Delta s \text{ with equal altitudes})$ $\frac{\text{Area of } \Delta HEK}{\text{Area of } \Delta HBG} = \frac{4}{25}$ $\checkmark \text{Answer}$ (3)		$\frac{\Delta \text{HEK}}{\Delta \text{HBG}} = \frac{\frac{1}{2} \cdot (4)(2c) \sin E \hat{H} K}{\frac{1}{2} \cdot (10)(5c) \sin E \hat{H} K}$ $\frac{\Delta \text{HEK}}{\Delta \text{HBG}} = \frac{4}{25}$	✓ Area of numerator ✓ Area of Denominator ✓ Answer	(3)
		$= \frac{2}{5} \left(\frac{2}{5} \Delta HBG \right) \dots (\Delta s \text{ with equal altitudes})$ Area of ΔHEK 4	✓S/R	
				+

Mathematics Downloaded from Stanmormakinysicsincom

QUESTION 5

5.1	Angle subtended by the diameter on a circle/	✓ R	(1)
5.2	Angle in a semi-circle $ \mathbf{P}\mathbf{\hat{Q}}\mathbf{R} = 90^{\circ} - \mathbf{x} \dots \text{ (Sum of angles of } \Delta\text{)} $ $ \mathbf{S}\mathbf{\hat{P}}\mathbf{Q} = 90^{\circ} \dots \text{ (Diameter perpendicular to tangent)} $ $ \mathbf{\hat{S}} = \mathbf{x} \dots \text{ (Sum of angles of } \Delta\text{)} $	✓S ✓S✓R	(3)
5.3	$\mathbf{Q}\hat{\mathbf{W}}\mathbf{R} = \mathbf{x}$ (Sum of angles of Δ) $\mathbf{Q}\hat{\mathbf{W}}\mathbf{R} = \mathbf{x}$ (Angles in the same segment are equal) $\mathbf{Q}\hat{\mathbf{W}}\mathbf{R} = \hat{\mathbf{S}} = \mathbf{x}$ SRWT is a cyclic quad (Converse of exterior angle of cyclic quad equal to interior	\checkmark S/R \checkmark Q $\hat{\mathbf{W}}$ R = $\hat{\mathbf{S}} = x$ \checkmark R	(3)
5.4	opposite angle) In Δ's QWR and QST		
	 QWR = S = x (Proven) Q q is common T q is common (Remaining angles of Δ's) ΔQWR ΔQST (AAA) 	✓S ✓S ✓R	(3)
5.5.1	$\frac{QW}{QS} = \frac{WR}{ST} = \frac{QR}{QT}(\Delta QWR \parallel \Delta QST)$ $\frac{2}{ST} = \frac{4}{6}$ $ST = 3 \text{ cm}$	✓S/R ✓ substitution CA✓Answer	(3)
5.5.2	$\frac{5}{QS} = \frac{2}{3} \dots (\Delta QWR \parallel \Delta QST)$ $OS = 7.5 \text{ cm}$	CA ✓ S ✓ R	(2)
	QS = 7.5 cm	CA✓Answer	(3) [16]

6.1.1	$ \begin{array}{c c} 35^{\circ} & 140^{\circ} \\ \hline 70^{\circ} & 1 \\ \hline p & 10^{\circ} \end{array} $		
	$ \begin{array}{c c} 38^{\circ} & 152^{\circ} \\ \hline 76^{\circ} & 1 \\ \hline & 1 \\ \hline & 14^{\circ} & 7^{\circ} \end{array} $		
	$\sin 20^{\circ} = \sqrt{1-p^2}$	M✓ A✓ Answer	(2)
6.1.2	$\cos 6^{\circ} = \cos(20^{\circ} - 14^{\circ})$ = $\cos 20 \cos 14 + \sin 20 \sin 14$ = $p \cdot \sqrt{1 - q^2} + \sqrt{1 - p^2}$. q	A \checkmark Writing as difference A \checkmark Expansion A \checkmark (cos 20°) value CA $\checkmark \sqrt{1 - q^2}$ CA $\checkmark \sqrt{1 - p^2}$ A \checkmark (sin 14°) value	(6)
6.2	$ \sqrt{\frac{\frac{1}{2}\sin 2x}{\tan(540^{\circ} + x)\left(\frac{1}{\cos^{2}x} - \tan^{2}x\right)}} $ $ = \sqrt{\frac{\frac{1}{2}(2\sin x \cos x)}{\tan x \cdot \left(\frac{1 - \sin^{2}x}{\cos^{2}x}\right)}} $ $ = \sqrt{\frac{\frac{1}{2}(2\sin x \cos x)}{\frac{\sin x}{\cos x} \cdot \frac{\cos^{2}x}{\cos^{2}x}}} $ $ = \sqrt{\sin x \cos x} \times \frac{\cos x}{\sin x} $ $ = \sqrt{\cos^{2}x} $ $ = \cos x $	A vexpansion of $\sin 2x$ A vector reduction to $\tan x$ A vector a A v	(6)
			[14]

Copyright Reserved

Mathematics Downloaded from Stanmormaning Stanmorm 8

QUESTION 7

7.1.1	cos 4x		
	$= \cos(2.2x)$	$A \checkmark \cos 4x = \cos (2.2x)$	
	$=2\cos^2 2x-1$	A \checkmark expansion of cos $4x$	
	$=2(2\cos^2 x-1)^2-1$	A \checkmark expansion of cos 2x	
	$= 2(4\cos^4 x - 4\cos^2 x + 1) - 1$		
	$= 8 \cos^4 x - 8 \cos^2 x + 1$	A✓ squaring bracket	(4)
7.1.2	$2\cos 4x = 1$		
	$\cos 4x = \frac{1}{2}$	A√ setting up equation	
	$4x = 60^{\circ} + 360k \text{ or } 4x = 300^{\circ} / -60^{\circ} + 360k$	CA√both solutions	
	$x = 15^{\circ} + 90k \ or \ x = 75^{\circ} / -15^{\circ} + 90k \ ; k \in \mathbb{Z}$	A √ 90 <i>k</i>	4.50
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A \checkmark k \in Z$	(5)
7.1.3	16 4 16 2 19	$CA \checkmark x = 15^{\circ}, 75^{\circ} / -15^{\circ}$	
7.1.3	$16 \cos^4 x - 16 \cos^2 x + 2$ = 2 \cos 4x	A	
	∴ Minimum Value = −2	A	(2)
	··· Milimum value – 2		
7.2	$2 \sin^2 22.5^{\circ} - 1$		
	4 sin 22. 5° cos 22. 5°		
	$=\frac{-(1-2\sin^2 22.5^\circ)}{2.2 \sin 22.5^\circ \cos 22.5^\circ}$	A√re-writing numerator and denominator	
	$-\cos 45^{\circ}$	A\sqrt{Numerator}	
	$=\frac{2.\sin 45^{\circ}}{2.\sin 45^{\circ}}$	A ✓ Denominator	
	$=\frac{-1}{2}\times\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$	A✓ Special angle values/ co - ratios	
	$\sqrt{2}$ = $-rac{1}{2} imes 1 = -rac{1}{2}$ Stormorephysics.com	A✓Answer	(5)
			[16]

-2

8.1	f: x-int., Maximum and Minimum and Shape	AAA✓✓✓	
	g: y-int., Maximum and Minimum and Shape	AAA✓✓✓	(6)
8.2	g(x)		
	$\left \frac{g(x)}{f(x)} \ge 1\right $		
	$g(x) \ge f(x); f(x) > 0$		
	$x \in (0^\circ; 180^\circ); x \neq 90^\circ$	AA✓✓Answer	(2)
			[8]

Total Marks: 100